
AFOSR-TR- 76 hh1 08

DYNAMIC ANALYSIS OF A LOADED CONICAL ANTENNA

OVER A GROUND PLAINL

Donald R. Wilton

Prepared by

Department of Electrical Engineering
University of Missisrinpi

University, MS 38677

for

Air Force Office of Scientific Research -
Bolting Air Force, D.C. 20332

N

Grant No. AFOSR 75-2832

August 1976 9 ;'.,

App". .$, .2ire% \

a ...riucZ~ '"llimited. - ,':i

Reproduced From
Best Available Copy

LV



AI V.oySIN1
VW11CY * CYV MIT. T

rorE~ 1 'U2 INS lAW .iji IJ-12 (,71'))



UNCLASSIFIED
SECURIT'f CLASSIFICATION Or THIS OACE tWhen frat. FZ& ',-

READ INSTRUCTION'SREPORT DCCUMENTATION PAGE F3EFORE COMPLETING FORM

I~ REPORT -EL - - --6------- 2~ GOVT~ ACCESSION NO, 3 RECIPIENT'S CATALOG NUMBER

4. TITLE (nnd Svbtitle) S. TYPE OF REPORT & PERIOD COVERED

( DJYNAMTCANALYSIS OF A.LOADED CONICAL.a/
"-ANTENNA OVER A GROUND PLANE 6. PERFONiu-C; -• rNMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(a)

Donald R./Wilton i ASR'-2832-

2. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT'NUMBERS

Department of Electrical Engineering
University of Mississippi 6102F -

University. MS 38677 /4 9751 /g7
11. CONTROL'-ING OFFICE NAME AND ADDRESS !2 .. REPORT DATE----

Air Force Office of Scientific Research A/uVgp _!u 76 / 6
Boiling Air Force Base, D.C. 20332 :3. NUMBEROF PAGES

86
14. MONITORING AGENCY NAME & ADDRESSI'lf different from Controlling Office) 15. SECURITY CLASS. (of this report)

, -f/ j UNCLASSIFIED
. - 1 5s.. DECL ASSI FI CATION/DOWNGRADING

"SCHEDULE

It. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release: Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

Reproduced From
,. SUPPLEMENTrARY NOTES Best Available Copy

TECH OTHER

t2. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

EMP SIMULATOR, BICONICAL ANTENNA, INTEGRAL EQUATION, IMPEDANCE LOADING

20. ABSiACT (Continue oan reverse old* It neceeeary and identify by block number)

Integral equations are derived and solved numerically for the current
distribution on a resistively loaded conical antenna over a ground plane.
Representative current distributions, input impedance values, and radiation
patterns are given for the loaded and unloaded structure with and without
a topcap.

"V "

DO 1JWN 3 1473 EDITION OF I NOV 65 IS OBSOLETE

UNCLASSIFIED OF THI -AG h/A
- . - ~SE CURITY CLASSIFICATION OF THIS PAGE ("otn Date Ente,.o



i~ 
--

DYNAMIC ANALYSIS OF A LOADED CONICAL ANTENNA

OVER A GROUND PLANE

by

Donald R. Wilton

Department of Electrical Engineering
University of Mississippi

University, MS 38677

• -.. -,,*1 .. .

for or .

Air Force Office of Scientific Research
Boiling Air Force, D.C. 20332

Grant No. AFOSR 75-2832

V August 1976

iAppr.rvc1 for puhlic release;

disL i'.bution uzulimited

Reproduced From
Best Available Copy



ABSTRACT

Three integral equations are derived and formulated

for numerical solution for the currents induced on a

S.resistively loaded conical antenna over a ground plane.

The first integral equation Is a relatively simple one for

a cone without a topcap. The second and third integral

equations are applicable to a cone with or without a top-

cap, but the latter equation is relatively cumbersome,

involving complicated kernels with various singularities.

A computer code has been developed for each of the three

methods. Numerical data for current distributions, input

impedances and radiation patterns are presented for resis-

tively loaded and unloaded structures, both with and

without topcap.
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SECTION I

INTRODUCTION

In a companion report [11, the static analysis of a

conical antenna over a ground plane is presented. In this

report, the analysis is extended to treat the time-har-

monic case and to incorporate a model of the resistive

loading of the structure. The resistive loading is intended

to reduce the effect of diffraction from the cone edge at

the higher frequencies.

If the cone has no topcap, the analysis may be consi-,

derably simplified and a simple integral equation for this

situation is derived in Section II and implementation of

a moment method solution Is considered in Section III. In

Section IV, an integral equation for the cone with a top-

cap is derived. Presented in Section V are numerical results

in the frequency domain currents for a loaded conical antenna

both with and without a topcap. In Appendix A expressions

are derived for the computation of fields from the currents

and Appendix B gives the derivation of an alternate integral

equation from that derived in Section IV.
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SECTION II

FORMULATION OF AN INTEGRAL EQUATION FOR

A BICONE WITPOUT ENDCAPS

For the symmetrically driven biconical structure of

Figure 1, the current on both the cone and its image are

radially directed and have no circumferential (0) variation.

Hence the magnetic field tangent to the cone is 4-directed

* - and the boundary conditions can be satisfied by fields which

are transverse magnetic (TM) to r. Thus, the fields may

be completely determined by a radially-directed vector

potential A - A r [2]. In an eigenfunction solution toS~r

such problems, the fields are determined in the bicone

region from a vector potential A which comes from ar

homogeneous solution of the wave equation. In order to

derive an integral equation, however, A must be expressed

in terms of the current on the bicone. In particular, a

free space Green's function is to be found for the vector

rripotential A r due to a unit radially-directed current element.

A superposition in egral then expresses the total vector

potential due to currents on the cone.

Beginning with the assumption that the magnetic field

is determined from A = A C,
r

I'I

I1
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Figure 1. Geometry of cone over a ground plane.



and using Maxwell's equations,

VxH JwcE+J

one readily determines by standard procedures that X satis-

fieq the vector Helmholtz equation

VxVxA - k 2X - PiJ • - JWWEVO (1)

where 0 is a scalar such that

E = iA - '

For a radially-directed unit current element,

r f

- • 6(r-r')6(O'-e')• ) (2)
r 2 sin '20

Expanding out (1) yields

SaA 2 AA r r 2i 2al 00 sin 6 a-- e r2 i2• k Ar]

r ~~ sin 0 ~,r siJ
+ I÷r o B _D r.• sin 6 3 13

r r r sin7 -YO "1 3

4



from which it is seen that

2
SAS~r

0r3 - *-jwIC

2
jr - IjW E (4)

These conditions are automatically satisfied by the gauge

choice ;A
S r 

(5)
jWlJE ~r

Substituting (2) and (5) into (3) leaves the one scalar

component equality

ain 1 a2 1S+ 2 n 3-+ '2i 2
ar r sine r 0 i2

+ k2A r -i(•-i') (6)

r

which can be rewritten in the more convenient form.

.. A
V2 1 I)-(7)(2+ k)( �r r'

To obtain (7), one notes that

r r

A solution of (7) which satisfies the radiation condition for

a exp(jwt) time convention may be written by inspection of (7)

as

5



e-jkli-P'I
A ij _ _(8)r 4 7r' r ?--f,

and the general solution to (3) for a distributed set of

currents is obtained by superposition:

Ar • jr(• )r e-k-;

r r -4 T d' (9)

This form of the vector potential has also been used by

others [3]. For the symmetrically-excited cone and its

image,
J (r')r - sr [6(6'-e)- 0 (e'-1T+eo)] (10)

rt

where Jor is the bicone surface current density. Sub-

stituting (10) into (9) gives the desired equation for the

vector potential:
2 Tr L

p.r sin o e-JkR+ e- kR
A - - (r') -- dr'a4'r 4 Tr 0 ar +

0 0

where

R. r2 + r' 2 
- 2rr' [sin e sin Cos cos e cos e0l

The plus superscript denotes source points on the upper bicone

surface while the negative sign denotes source points on the

image surface.

6
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It is convenient to introduce the total axial current

Ir') ( 2rr' sin O J1 (r') (12)

0sr

so that (11) becomes

271 L
27rj L kR+ JjkR

A p r2 f' f L dr'd. (13)

0 0

The radial component of electric field is now given by

E a I (- + k2 A (14)r JWPF = r

The simplicity of (13) and (14) compared to the usual

vector potential representations should be emphasized at

this point.. One notes that in the usual representation, two

V vector potential components, A and A,, would be present,
r

Furthermore, the integrands of the potential integrals would

contain somewhat complicated dependences on angles between

observation and source points which arise from pr jecting

the source vector onto the potential component vector for

each source and observation point. Finally, the expression

for the radially-directed electric field would be complicated

and difficult to handle numerically compared to the approach

to be followed here. These complications indeed will appear

in the formulation which includes a topcap on the bicone struc-

tute (Appendix B).

7
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An integral equation for the current is obtained by

L applying the boundary condition that the radial electric

field must equal the impedance loading times the total

current density, i.e.,

E - Z (r)I(r)r s

Since all currents and fields are ý-independent, it suffices

to take all observation points along the intersection of the

plane *-O and the conical surface. Hence, we obtain finally

1 ( d2  k2
-+ k+ A - Z (r)l(r) - 0, O<r <Z, 0-00,i-0
j W1J r a -2 r

(15)

Equation (15) is an integro-differential equation for the

induced current on the bicone. As it stands, (15) does not

appear to contain a driving term due to the applied

voltage at the bicone terminals. In the next section,

however, this term appears as a "boundary" condition on

dA /dr at r-0. One also notes in (1-5) that discrete orr

lumped loading may be introduced by allowing Z (r) to be

represented by appropriate 6-functions,

NL

Z (r) = Z 6(r-r n)
s nai Ln Ln

th
for NL loads where ZLn is the impedance of the n load

located at rrL.

8



SECTION IlL

APPLICATION OF METHOD OF MOMENTS ID A

BICONE WITHOUT ENDCAPS

The usual procedure in applying the method of moments

f[4) is to first represent the unknown current as a linear

combination of an appropriate set of basis functions and

then "test" the resulting integral equation with a series

of testing functions. Here it is convenient to reverse

this order and to first test the equation before expanding

the current. A set of testing functions which offer a

number of advantages in a numerical procedure are the piece-

wise sinusoidal testing functions:

sin k(Ar-r) 0
V Cr) sin kAr , 0 r <Ar"11

0 , Ar, <r<L

sin k(Ar-Ir-r 1)

win(r) = sin kAr ' ni-I < m+1

0 r-rm > Ar

m 2,3,..M (16)

where Ar = L/M, r = (m.-])Ar, m-1l,2 ... M
m

These testing functions are shown in Figure 2. An inner

product Is next defined as

9
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L

< f(r), g(r) > f(r)g(r)dr (17)

0

and (15) is successively tested with each of the w
re-i, 2,.. H

,|-2

dr2

" 0, m-l,2,.,.,M (18)

Taking, for the moment, m-l and integrating the first term

by parts twice results in

K ( d 2  k dA I_ _ _ _

d,2 r' + s-inkAt Ar(r 2 ) r
dr J2 At d -r Ir-0.-

k cos kA r
sin kAr- r 2

where A r(r) M Ar r-r Note that although

O= A0  0 0, (19)

Ar (r is not zero along the bicone. In fact, one notes that

a 2_AE1 •2r

E0 wJIjEr 3r e

and that the bicone voltage at r-O is 4ust

*11

i r.1



' 1'
V0.Of Eo0Erder

J Ir-O

0
S41/2 2

a2A 3Are dOr )

"rd r

00

where, using (19), one sees that DAr/tr=O at 0=7i/2,

Thus for M-1, (18) becomes

ktr cos kAr A (r + A(jw0pE sin kAr co ~ r I r2]

- s(r)I(r),w>. -V 0  (20)

For m- 2,3,4,...,M, integration by parts twice in (18) re-

sults in

s kAr [A(r 1 2 cos kArA (r ) + Ar (rm_1

Z- (r)I(r), w = 0

S8

(21)

Note that the choice of testing functions has resulted

in removing all the derivative operations from the operator

equations. This is the principal advantage of the testing

functionj chosen.

12
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A matrix equation now results if the current is

expanded in an appropriate set of basis functions, A

convenient set is the pulse functions defined by

( I , 0 < r < Ar/2

0 , Ar/2 r< L

fi Ir-r n j< Ar/2
pn(r) -

0 Ir-rI > Ar/2

:1

n " 2,3,,,,M -

(see Figure 3) and the resulting current expansion is

M
I(r) Y I n P (r) (22)

n-1

Note that the current at the bicone edge r-L is auto-

matically zero by our choice of basis functions (Figure 3).

When (22) Is substituted into (20) and (21), there

results the system of linear equations

s k - cos k/r T (r 1 ;rl,rl+) + '(r2r 2;r 1 +

-<Z(r)Pl(r), 
wl>) +

13



(I
Hf kF1

+ • -cot kAr T(r ;r r , +)

2  n \ ( t i d i F s i n k ,-r 1 n ( rn;r . , r + )]

<Zs(r)P(r), I1l>} -V 0

(23)

and

7w _ sin kAr (rm~i;rlr,+)-2 cos kAr '(r,;rl,r 2 )

+- M(rm+l;r1'ri+i -

+ I n(rm ;rn_ rn+)- 2 cos kgr''(r;rn_,rn+)

+ '(r 4 ;rrn+)]T ; <Z (r)p (r), Wmj

I 0 m-2, 3.. ,M

(24)

These equations may be assembled into the matrix

equation

ZIh= V

where ! o
! = , V , 0

M

14
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on cne

Figure~ 3. Pulse expansion functions for the current

• on LhC cone.
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and the elements of the Impedance matrix may identified

from (23) and (24). The functions Y(r;r.. r +) are
n- n

defined by
2Tr r+,L

(e- -jkf R kRnrn+

f2 f -R e--
'Y(r;r ,r) = 21 ~ ----. dr'd4¢' (25)"0

0 r
n

where

Ran r + r'2 -2 rr' (si 2
0 Cos *' +cos 2 0) (26)

I and where

r + r + Ar/2
n n

The evaluation of the double integral in (24) is

simplified by analytically approximating the integration

with respect to r'. This may be accomplished by noting that

in general k(r+- rn) << 1, so that a few terms " a

Taylor series expansion about some point r in the intervaln

[rnrn+] should be accurate. Accordingly,one writes

+ + 4 +

-JkR- -jkRn -jk (R-R)
e e e

-tikR
e jl-jk(R-- R)] (27)n

where Rn= R Ir,-r Substituting (26) into (24) and listing
n

as a fourth argument the point about which the expansion is

made, one obtains

16



t

W'(r;rn ,r+) r T(r;r _,r+,r)
ii• 2'n rn+

= r r Jk.R+ +JkR

0 rn _
"-jkRn l+jkRi t-'

-e •r1 R- r d

Sn n( n- k--e e---= - -

+2 r+ +

0

rj9~

rnj

- JklRn [I ]kR -n lo rn+(Rn,. 4- r - rn b') ,
Jr- r n(R-+ + r - rn+b)

n n-jkn n n- (28
r 2r +sr r

2 2
where b- sin 0 cos ' + cos 0 In several situations,S0 -0O

appropriate limits of the Integrand of (27) need to be taken.

First, when the source is the current segment at the bicone

terminals, the integral (27) reduces to the simple form:

'1'(r;r 1,r 1 +) -- (r;r 2 ,r 1 4.,r 1 )

f -j kr b rl+ d•'

4T2 RI+ + r -
0

(29)

17
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As the observation point r in (28) approaches the

bicone terminals, r*r1 0, the limiting form of the inte-

grand can be integrated. The result is

• 0

4'(rl;rrl+,r) rlog('ot -- ) (30)

a very interesting result that is independent of the sub-

domain size at the bicone terminals. Finally, all the so-

called "self terms" Y(r ;rr ,r). n~l, contain anni, n -9 n÷v n

integrable singularity, In fact one easily establishes

that .+
r (R+n+ r - b r

log n n- • n O- 2 log Ig''
o(Rg+ + rb- + r-r

-n+) n

This singular term is then subtracted from the integrand in

(27), resulting in a non-singular integrand which is then

numerically integrated. The term

f• Z dl- (Znll -1)

0

is then added to the result to take care of the part of the

integral contributed by the singularity,

18
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iI
S EC TI N IV

r FORMUILATION AND NUMER[CA1, SOLUTION OF AN

INTEGRAL EQUATION FOR A BICONE WITH ENDCAPS

The formulation cf the integral equation for a cone

radiator over a ground plane with an endcap is considerably

more complicated than that for the case when the endcap is

not present. It is possible, however, to generalize the

approach used for the bicone without a topcap and to trans-

form the derivatives appearing In the equations into har-

monic operators along the radial cone and topcap coordinates,

as is done in Appendix B. This approach has the advantage

again that testing with piecewise sinusoids allows the re-

placement of derivatives by a finite difference of potentials.

However, to effect this transformation, an extremely com-

plicated kernel must be used (see Appendix B ) which contains

many singularities other than the usual ones where source and

field points coincide. While this approach has been used,

it has been found to be unwieldy and rather inefficient.

The approach described here begins with the description

of fields in terms of the more commonly used vector magnetic

and scalar potentials expressed in terms of the cone currents

and charge. However, it is found that these potentials are

singular at the bic.one terminalq which again creates an

unnecessary complication. In order to circumvent this problem,

thc cone and image surface- are allowed to intersect with a

19



small "waist" of radius "a" (Figure 4). If "a" is very

small, there should be negligible difference in the Input

impedance and currents found for this case and that for the

limiting case of a-0. For convenience, the cone coordinates

are defined with respect to the projection of the cone sur-

face to a tip, as in Figure 4. Furthermore, the direction

of the unit vector r and the positive direction of corres-
t

ponding vector components Is taken to be towards the center

of the topcap, in the direction of decre sinj rt
?t

The integral equations are obtained by setting the

radiated fielI tangent to the cone surface equal to the

impedance drop per unit length due to the loading:

-JwA Z 1 0, a/sin 8 < r < L + a/sin 0 (31)""r sr c s c 0 c- 0c c

-JiwA Z I 1 0, O< r < L sin 0 + a (32)r r St t 0

where the tangent'al components of magnetic vector potential,

A and At, are given by
r c t

2rL+a/sin 8 0 -JkR - p
cos e pcCcos e e cAr _2 c + _ _ dr'd$'

p 8 RpcR Jca/'sin C0 pc

2T LsinO0+a -+-kR + --jk pR'

~ Pt 'do

72+ in ++ ±.iR drtd~'S f tt R + Rt

.0 0 pt pt

... ,p = c t (33)

VA/, 20O

IL•'.:;,.••
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F~gure~ 4. (Ceotnetry ot cone with endcap.



The scalar potential is given by

I,+a/sin 00 k R -jkR
d pc PC-C e L

_2 eR+dr dt'
280 dr R+ C8. pT WEfpcRR0 a/sin 0

2r k sin 0 0 +a ( - )t ()

f f+ Pte e dr-dý'
R+ -

dr R R
0 0t pt Pt

p , c t (34)

The currents I and I are the total linear currents on
c t

the conical and topcap surfaces, respectively, and are re-

lated to the corresponding surface current densities J andc

J tby
t = 2Tir sin 9 a

c 0 c

= 27rr J (35)t t t

The distance quantities are all of the form

i+ /'2 + ' +

R - - r +2b + c p,q =c,t
pq q pq q pq

where

b r si 2 0 coo s r co3 2 - a cot Cos 30(11)
0 c0 0 0

22



= r + @ 2,t c (1+1) - 2r -i cos cot I ( L)
(' c U " 0 0

b t±- sin CO cos÷et C 0o

2
cot r 2r cos 0 (a cot 0O L cos 0 + (a cot eo± L cos 60)c 0-

+ 2
b - + L co - a cos 0o 0 r t sIn Cos42

' r 2+( co +6 a cot 00)2

• •I Ctcb rt (Cos 0

btt = -t c s •

± r + L 2 Cos 2 0 (l,1) 2

tt = t

The angles between the source current elements and the tan-

gential component of electric field at the observation point

are determined by

±+ 2c0 2o0 .-cos + Cos 4si 0 + cos 0
cc 0 0

+cos t - =+ sin 0 cos 4'
ct 0

Cos t t + Cos 4'tt

Cos i - + cos •' sin 0
tc0



It is convenient to choose as testing functions the

pulse functions p shown in Figure 5. Thus, testing (31) with

p, results in
1i

-jW Ar 1p P- - KsI , Pl> 0

Upon integrating by parts in the central term, and noting

that A is slowly varying over the interval and het,ce mayr
c

be approximated by Ar (rc), one obtains
c

tAr
-JwArr ( r c 2 r C 1 + Arc/2 ) - $(r 1 )1 -c zsl a '>I 0

C<

But O(rcl) is just the bicone terminal voltage V0 with res-

pect to the ground plane. Hence,

-JwA (r (l)Arc - 2C(rcl+ 6 r/2) - sZsI C P 1> -2V 0  (36)

For the remaining testing functions on the cone,

testing of (31) integration by parts on t-he scalar potential

term and approximation of the vector potential by its value

at the center cf the pulse yields

-JwAr A (rc) - (4(r + Ar /2) - - Ar /2)]c r cm Cm ccm cC

- <slc , Pm> * 0, m - 2,3c,..Nc- (37)

24
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1: .e

I.

trto #1 • ,

Figure 5. Pulse expansion and testing functions.
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At the edge, the testing pulse (,onsists of two parts,

one on the cone surface and one on the topeap. Hence, both

equations (31' and (32) must be used. With approximations on

the two vector potential components Ginilar to that above,

integration by parts, and enforcement of continuity of

the scalar potential. at the edge, one obtains

jW[L_ý A (r +cN 1 Art 1AIr
2 r -2 r t 0

C C

-[O(rc -Ar /2)-4)(rtl+6rt/2 )1 - IZ P 0>38
Ir PNt ti 0 (38N)

c c

where I - I or I as is appropriate. On the topcap,
r c t

one has, analogous to (37),

-JwAr A (rt) - [t(rt- ir /2) - 4(r + Ar /2)1
t r t m tui t tm t

- s 't 'N -1+m> 0 0, m-2...., N +1 (39)

The current is next expanded in the set of pulse functions

Pn of Figure 5,

N

S(r) I p (r ) (40)C• c 11 n C

N 4+NNC t

I (r I p (r (41)
nN n n t

C.

26



Note that the cuurrent LN at the edge of the cone is the
C

same on both the cone and the topcap surfaces. The derivatives

of the currents above are approximated by a finite difference

of adjacent current pulses which is then assumed to be ex-

panded in its own set of "charge" pulses (see Figure 6 );

dI Nc-i t+!
p - P(rc) (42)

d C n-l c

-Ndit c t nl-I + )()

w et -n -N + is t t b zrt
c

where I~cN+ is taken to be zero.

Thus the vector potential quantities in (36)-(39)may

be written as

A - (I •p (r re r 4 Ar /2)
rt 87 1  c p c c c

NC1

+ I ' ' (r, r - Ar /2, r + Ar /2)
n=2 n pc en c en c

+ IN [•pc(rp r cN o rN ) + ,prt(rrtlr+ rt/ 2 )]
Cc c

N +Nt

+ I (r , r - Ar/2 r + 6 rt2
n-N +1 n pt p t,n+l-N t t,n+l-NC C

C

p = Ct (44)

27
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Lpi

Figure 6. Pulse expansions for the charge on the cone.
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and the scalar potentnial is

NC-1 1 F-itn+j- n (r, r + Ar )

N +Nt

+- p t r p r(rp, rttn+I.N+ Arj C

p = ct (45).

where

0r r+ +

r n+ JkR p

'V (r r. f+ e d-r'
•pqrp rn ,r+ p

RPq+ c'os eP = p dr' dob'

f Pq
rI1-

pq = ct (46)

and

2 rn+ -kR +•p (rp r _ rn ) =f fe- R pq :

pq p' n- n++

0 r Pq
n -

J J q
-jkR - 1

_ dr' dO'

pq

p,q c,t (47)

29



The inner integrals In (46) and (47) can be approximately

analytically integrated. They are all of the form
rn+ -jkRi

I.
Sr.n. . .. d r 

( 4 8 )
R

r

where R is of the form

R r' 24 2r'h + o (49)

Since the range of integration [rn, rn1 is small com-

-ikR
pared to a wavelength, it is appropriate to expand e in

a Taylor series about some point R which is the distancen '

from the observation point to a point rn in the interval

r, rn+]. Thus,n- n+r

-JkR -jk(R-R ) -jkRn ne = e e

-kR
= [cn s k (R-Rn) - j sin k(R-Rn)]

n

k 2 (R-R jk(RR)

+ jk 3 (k-R ) 3/61

The error in the real and imaginary parts is less than

k 4 (R-R)4 k4 (Ar/2)

n

Max - - -- <
n ,r 1 24 - 24

30



where Ar is the subdomain size, For five subdomains per

wavelength (Ar/X - 1/5), this results in a maximum error

of less than 1% in both the real and imaginary parts of

the integrand. The resulting integral should indeed be

much more accurate than this. With this approximation,

nr+ -jkR -jkR

e ni

J R dr' e (1 1 - J1 2 )

[• rn-

where

1-k 2 (RR n2/2
Il-f R dr'

r
n-

2 22
n- Xn n+ n + k 2R ( r

R + r + b an n+"J n- n-

rn++ b 2n R +r b
2 rnb- + c-b2  In+n+ra+~-k - R -- ~--R 4n~2 n+ 2 n- R +r 'TI)

n- nw

and where

rrn+ k(RR) - k3(R-R )3/6

n2•" n dr'

r n-

-(-k R + k 3 R3 /6)n n IRn+ rn+ +b + (k-k 3 R /2)(rn+ r)
no Rn-+rn + bn n n-
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k2 cb nf+ +r +
R3 [r+ - +b_ 2 r ++ bi1

_-"R •" R + ••' ••n+ 2 n- I- -+

3 3

S3[r,+ - r • - b 2rn+- r ) + c( r)-3 b (r3 n' r- rn+

Combining these results, one has, finally,

"rn+ -JkR

R

r
rn-

"-ikRn k 2Rn2 k3Rn3

e + 1 + JkR n 2  
n

n n+ n++

1 (k 2+ jk 3 R)[(rn+ b)RS- (r + b)R

4 n + n+ n- n

3 3 -

Ik rkn r n0 2 2
+ ++ 6 J-3 + ---- b(r -r) n

6 2

Equation (50) is singular in (p' if the observation point is

in the interval [rn_,rn+] Hence, the integrals in (46) and
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(47) need to be evaluated by subtracting the singularity

from the integrand and adding its integral to the numerically

determined integral. If r is in the interior of the intey-

val, r < r < r (50) behaves like -2tnir'I near 0; 1i'n- n n+'

if rno r or rn rn+, (50) behaves like -ZnIý'I. The de-

tails of the procedure parallels that described at the end

of Section III.

3
Li
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SECTION V

NUMERICAL RESULTS AND CONCLUSIONS

This section describes numerical rvsults obtained

from the computer code developed from the theory described

in Section IV. The resulting code was written to model the

cone with or without a topcap. Hence, results from this

general code could be checked against those obtained from

the code based on the methods of Section III for the cone

without a topcap. For narrow cone angles, the calculated

input impedance for unloaded cones for various frequencies

was also compared to the theory of Schelkunoff [51 and

found to be in very good agreement. Results from the general

code foi moderate cone angles were also compared with those

computed by the method of Appendix B, which includes the

effects of the topcap. These comparisons were made to vali-

date the consistency of the various approaches and to com-

pare with existing data. It was also established that

the input reactance at low frequencies could be used to

check the static capacitance calculated in the companion

report [1] for both the loaded and unloaded case. Finally,

it was verified that the computed results were almost

independent of the choice of the waist radius, a, of Section

III, provided a was chosen small enough.
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All the data in this section pertain to a conical

antenna with a vertical height of 40 meters and a cone

angle of 00= 42.260. These parameters translate to a cone

slant height of 54.05 meters and correspond approximately

to the cone considered in [6]. The locations and values

8i of the lumped resistive loads used are listed in Table 1

and are taken from [6].

Figures 7-10 illustrate the current distribution on

the cone at a frequency of 825 KHz, approximately the first

resonant frequency of the unloaded structure. Figures 11-14

illustrate the same results at 1.375 MHz, approximately

half-way between first and second resonance of the unload.ed

structure (see Figures 15 and 16). Two features of the cur-

rent distributions are notable. First, the edge condition

17], which requires that the current at the edge has in-

finite slope, and the continuity equation relating current

and charge, which requires that the total current approach

F' zero with zero slope at the center of the topcap, combine

to limit the amount of current the topcap can support.

Secondly, the loading, which increases to a maximum at the

edge, further limits current flow on the topcap.

Figures 15-18 illustrate the variation with frequency

of the input impedance of the conical structure for the varn-

ous loading and topcap configurations. Again, the influence

of the topcap is found to be negligible. The absence of
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Table 1. Positions and values of loading
resistors on the cone.

ARC LENGTH ALONG RESISTANCE
THE CONE GENERATOR

(METERS) (OHMS)

12.17 4.69

14.34 7.17

16.90 9.06

19.93 11.74

23.54 15.43

27.73 20.82

32.59 30.36

38.41 50.38

45.31 114.88

53.43 114.88

63.15 100.00

72.25 100.00

78.35 100.00
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Figure 7. Current on unloaded .cone with topcap, L-54.05m,

o0= 42.260. Vo= I Volt, f - 825 KHz.
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Figure 8. Current on unloaded cone without topcap,L-54.05m, b- 42.260, V = 1 Volt, f - 825 KHz.
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Figure 11. Current on unloaded cone with topcap,L-54o05m,

0 42.260, V0 = 1 Volt, f -1.375MHz.
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Figure 13. Current on loaded cone with topcap, L-54.05m,
00" 42.260, V0- 1 Volt, f - 1.375 MHz.
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Figure 14. Current an loaded cone without topcap,
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f =1.375 7 z.
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Figure 15. Input impedance of unloaded cone with topeap,
L-54.05m, 0 - 42.260. Encircled values of
imaginary part are positive.
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values of imaginary part are positive.
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Figure 17. Input impedance of loaded cone with topcap,

L-54.05in, 8O" 42,260. Imaginary values are
negative.
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resonances in the loaded case can be attributed to the

effectiveness of the resistivp l o adtnh .in eliminating

reflections from the cone edge which would result in

standing waves on the structure.

Radiation patterns in the near-field region of the

loaded structure with a topcap (r - 100 meters and the

frequency is 550 KHz) are shown in Figures 19-21. Figures

22-24 give the corresponding patterns in the far field

10(r 4 0 meters). For comparison, far field patterns for

the unloaded structure are illustrated in Figures 25-27.

of Although resources did not permit a time-domain analysis

of the response of the structure, such a study, which could

include a simple equivalent circuit model of the pulser,

would be a logical extension of the present problem. To
K be done efficiently, however, some improvements In the

present computer code should be implemented. Specifleally,
U an adaptive integration procedure should be employed to

handle the integrations over the conical current sub-

domains, whose radii vary drastically from regions near the

feed to those near the cone edge. The present code uses a

fixed order quadrature rule for all segments on the

structure. Additional parameter studies can be carried out

using the present code to assess the effects of lumped vs.

distributed loading and the effects of various load distri-

buttons on the performance of the simulator. A more
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Figure 20. H radiation pattern for loaded cone
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Figure 21. E radiation pattern for loaded cone
w htopcap, L-54.05m, 00; 42.260,

vow 1 Volt, f 550 KHz,r loom.
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Figure 22. E radiation pattern for loaded cone
wIth topcap, L-54.05m, e - 42.260,
V I Volt, f " 550 KHz, 0 r 10 4 m'
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Figure 25. E radiation pattern for unloaded cone
wqth topcap, L-54.05=n, 0 - 42.260,
V 1 Volt, f - 550 KHz, r - 4m.
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Figure 27. E radiation pattern for unloaded cone
vwth topcap, L-54.05m, 6 - 42.2,
V0o 1 Volt, f - 550 KHz, r - 10 m.
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ambitious project would more carefully model the actual

wire structure with loading.

One conclusion of this and the companion study [11

is that the addition of a topcap does not significantly

change the electromagnetic parameters of the structure -

at low frequencies, the static capacitance and effective

heights are almost unchanged and at the higher frequencies,

the loading and the sharp angle at the edge tend to pre-

vent current from flowing on the topcap. This observation

may have some impact on the design of future simulators.
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APPENDIX A

CALCULATION OF RADIATED FIELDS

Once numerical values for the current distribution

have been determined, the fields radiated by the bicone

structure can readily be determined. Because of the

symmetry of the structure and the excitation, the only

non-zero components of the electric and magnetic fields

are Er, E., and H These are defined in terms of the

vector and scalar potentials as

Er JwA ---

1 I
E'0 " -JwA o  r

BA D
PH -A + (A-1)

where A - Arr + Ae8. A spherical coordinate system centered

at the bicone feed and with 0 measured from the z-axis is

assumed. Since the fieldn are 0-independent, all fields

are evaluated in the x-z plane where 0 - 0. The vector

potential and scalar potential are given by

A (r,) - PC (r,O,r + Ar /4)

Nc
+ C I (r,O,r ) +

n 2 n pc n
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N+1 Ar Art
2 LpcrI 4 + pt (r''rN +1 4

N
+ X I •p (r,'8,r) ; p - r,0 (A-2)
ninN +2 np

(OI 2 rl8,r n+ ..

N 82 =I I Ar
+ n N ý qt r,ern- 2 (A-3+

C t

where the currents and ooordinates are defined in Section IV.

The potential functions T and 1P are defined as

0q q

+
2r ikeq -j k

co, o or o•,€ q )uSoo f(Cssn 4, +co8s oo ),d' --

+~

cos ±;t sineo cos 4¢'Bi +COeco8

rc -0 cs0 0s
co. -O .,, cs4 in in O

q 0

R R7

q qq q

hre

cog w +t sOB 0 co in6+co ose

co & + sinbrco

q r qqbt ci
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with

b••= -r cos o' sin e sin 0 + r cos 0 coo 0 a cot 0
0 0 0

+ 2 2 2
C = r - 2ra cos csc 80 + a csc E0

C 0 0

St_- r sin e cos o'
t

"c = r + 2rL cos 0 coo e + LSc 0

Assuming a suitable choice for Ar and Ae, one may approxi-

mately compute the fields in (A-1) by finite difference

approximations;

Er(r,O) =-JwAr(r,6) -(r+Ar,-)-O(r,A)

r r Ar

Eo(r,O) -JwAo(r,O)

A A0 (r+Ar,O)-A 0 (r,0)

rA0 (rO) Ar

A (r,O+AO)-A (r,O)r r (A-6)
rAO
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APPENDIX B

AN ALTERNATE INTEGRAL EQUATION FOR

A CONE WITH TOPCAP

The purpose of this appendix is to show how a novel

identity involving the free space Green's function may be

used to change the integral equation into a form where the

testing procedure of Section Ill is applicable. In ex-

change for simplicity in the form resulting from the testing

procedure, however, one obtains extremely complicated ker-

nels in the integral equation. Furthermore, the new ker-

nels have a number of singularlties other than the usual

one where match points and field points coincide. These

complications make both the analysis and the numerical

treatment tedious. Nevertheless, numerical results have

been obtained for several cases using the approach and the

results are in good agreement with data obtained by the

method of Section III. For simplicity, we treat here only

the unloaded cone.

As a prelude to the integral equation derivation,

we derive a transformation of the formula for electric

field components. Consider the x-component of electric

field given by

jwpE E l.(k 2 +VV.)A

2
X a

_2 2 2 A 2 A
a (_ k + )A+ - + Z (B-i)
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where the vector potential A in terms of current density

Ss -Jkr-r-' [

d V (B-2)

V

The identity

1. _ [ + k2+ [e-3+2 +2 2 +w

where R - iu2+v2+w can be used with u - x-Ix, v - y-y

and w = z-z' to rewrite (B-1) as

21 f -x')(y--e ) v

j w p E x 2 + k J x - _" ( " 2 + _,
a (y-y') +(z-z)

V

(X-X (,-Z' I e-JkR4kRz ( , 2+( _ , 2] R -

-Yy' + (. • -

a (y- y,) 2+ ( z-y ,)2i z z )

e dv' (B-4)

SR

The vector r-r'- (x-x')i + (y-y')9 + (z-z')^z can be written

as the sum

r-r' (r-r') + (r-r') 'x t

where

(r-r') - 9.(r-r') x-x'
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is just the component of r-r' along the direction of • and

(r-r') e = r-r' - (-'
t x

is just the component of r-P' transverse to X. Thus,

(B-4) can be written as

J WP C E, =L + k2j f , ( - dO'
jw~I:E- 2 2 R __

ax 2 (r-r )t

tR
V

( xSiv'5--)2 ) dV

(B-5)

Since the choice of the coordinate system is arbitrary, we

may choose the x-axis parallel to some constant unit vector

a and write the component of electric field in the direction

"of a^ to be

+ k2fj. - ')t

V

xeJkR
x R dV'

=a 2  +21 -f cot (A, e-)JkR v'

V
(B-6)

where now t denotes the direction of the component of

(r-r') transverse to a and s denotes distance along a line

I the direction of g. Note that the integrand in (B-6) is

singular not only when R-0, but also when the angle between

Sand r-r' becomes either 00 or 180o. Since in (B-6) the
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only differential operator is the harmonic operator, then

along a line In the direction of a, the testing procedure

of Section III which uees piecewise sinusoids may again be

used to transform the harmonic operator into a finite dif-

ference operator. This is the advantag,?, gained at the

expense of obtaining a more complicated kernel, of em-

ploying the transformation (B-3).

Returning to the cone problem, we choose the direction

of 9 to be along the cone generator formed by the inter-

section of the 4.-0 plane and the cone surface, and apply

the boundary conditions. After some straightforward but

tedious vector projection operations, one arrives at the

integral equations

2+ k2'cc+ ' =" V 0 6(r-O+),

0< r C<L (B-7)

I+ k '~tj-0, 0< r < L sin 0 (B-8)
j V1C 2  ' Vtc+ 'f,-t0

t

where 2r0 L

T '(r) I cr)(K+c + K- c)drd
PC p 872 J pc pc

0 0

21 Lsin80

T (r) I It(rt)(K+ t+ Kpt)dr'dt',
P t P 8Tr2 J J t Pt p t

0 0

p - c or t (B-9)
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The kernels K p in (B-9) are of the form

pq

/ p r Rpf (' )r'B (')
Ipq pq q"

-j kR±
e pq

pq.9

The distance between source points and field points,R

is of the form

+ ±r .
R r + 2b r ' + c

p t* q pq q pq

and b and c are as defined in Section IV with "a" set
pq pq

+
equal to zero. The term C may be expressed as

pq

+ t
C *e r, + f
pq pq q pq

t
The parameters A pq' B pq' D qP and f pqare defined in

Tables (B-1.)-(B-4).

Testing Equations (B-7)and (B-8) with piecewise-

sinusoidal testing functions as in Section III results in

the equations

jwsik r\ cosk~r [Y c(rci + ~ T (r
jwesnkr ccc c2 ct C

+ [ c (r c2 + Ti ct r c 2)] V (B-10)

"AN
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TABLE B-i

DEFINITIONS OF PARAMETERS FOR THE KERNEL Kcc

A - sin 2 6o[sn2•2 + cos 2e(Cos 2, $ 1)]
c c 

0

B -0
cc

+ ± 2 2

D -e s 0 Cos + Cos 0
cc cc C n 0  0

f r

TABLE B-2

DEFINITIONS OF PARAMETERS FOR THE KERNELK

-coo e cos 2' + sin 2k
cc0

1 2
B = + L cos e sin e cos o '

C t 0 0

c t 0

f± -r+ L cos 2 0
c t C 0
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TABLE B-3

DEFINITIONS OF PARAMETERS FOR THE KERNEL Ktc

A - sin 2  sin . Cos

t • 0 0
At•- Lc.e ;iCO

±2

ftc tc i

f -r

TABLE B-4

DEFINITIONS OF PARAMETERS FOR THE KERNEL K
tt

B±
tt

+ ±D e~ incos •'

tt t
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if3
and

jwpesinkAr C cc c,m+l) + Ctrc ®+1

- 2cow kArc[ C(r) + If (r )]

C ccm ct Cm

+ [cc (r Cr c-l + 'y ct (r c M-1)) 0,

I,:
(B-11)

Testing at the cone edge with a piecewise sinusoidal testing

function which straddles both the cone and the topcap and

which has its peak value at the cone edge, one obtains

k {- co kArc[Y cc (r cNc) + ct (rcNc)1J•ipcsinkArc

+ [T (,C -i) + 'ct (r+[cc rc Nc cN 1

k -co kAr [A(r ) + (r )]
+ jwpCsinkAr O ttctl tt

+ (r + •t(rt 2 )]I

+cc c t r + Ir rt1 0jP rc ar~ c ar t a
rcJ r cNc rt1r.0

(B-12)

Finally, testing on the topcap surface yie[ds

jWiEzsifkA'r ( [ T( r )+ rttjponr ct,m+l (rt t,m+l)

- 2 cos kAr [•t (rt) + ttl (rt)] +

t tc t' tt tm
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+ [• rt + (rt ] 0,.
tc t m-1) tt t,'M-1

m-2,3,...'N t +1 (B-13) i

Substitution of the current expansions, Eqs. (40) and (41) of

the determination of the unknown current coefficients. Be-

cause of the pulse expansion for the current, the matrix

elements involve integrals like (B-9) but with the current

in (B-9) equal to unity and the limits on the radial inte-

gration replaced by the limits of the corresponding current

subdomain. According to (B-12), the term at the edge also j

requires the derivative of such integrals. In the following,

we present a procedure for approximately evaluating the

radial integration, leaving the *' integration to be done

numerically. The required integrals are all of the form

r r
n+ n C(Ar'+) kR

K dr' JL D + .2 2 + dr' (B-14)
JR 2-C 2J

r r
n- n-

where, for convenience, all subscripts and superscripts have

been suppressed. Since the number of subdomains should be

chosen such that kjr - r I is small, we chose some point

r in the interval [rn+,rn_ and expand exp(-JkR) in a Taylor

series about the point r'- r ;
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-JkR -JkRn -jk(R-R "
e -e e

-JkR
e n l1-jk(R-Rn) (B-15)

where R denotes R evaluated at r'-r . The resulting approxi-
n n

mate integral is

_ Kdr' =+R C •
r r

n+ + k + _ ) (R-_6
D R' 2_C 2 J

r r

-jkR
-e n (1 1 + 12 + 13) (-6

where

r
n-

IrnkD+ -(r +B- d r'

f3 R (+knR2 C 2

r

and

r n
- 'l~kR~ C(Ar'+B r

r

The first integral may be evaluated by substituting the

definitions for R and C in terms of b,c,e, and f;

Ar
n+4

~~ .. . . .R ,( r ' B , d I III



r

~ kf ( A;2+(Be+Af)r +Bf )
2-jk D + dr'

2 +

(l-e )r 2+2(b-ef) _f2
r

n-

'=-jk F I(r n+- rn-) + F 2 Ln i~2g 21-C+

nD- n-

+ [ ta n - ' I )- 
) r ne c • 2 b- e f2

3, 2"1e)Cf 22b-f

[2e'-e) tA\ I-(e2)r +(b-ef) (1- tan-1 •n- •f( -

3F AAl

IF WI D +----
1-e

(2. Be+A~f)(l-2)2e(b-ef)
f ~2(1"e2)

[(~2 2 V2 2 2 2.

F F3 =[2Ae(b-ef)2-- Ae(l-e2) (C-f2)-(Be+Af) (b-ef)(1-e2)+Bf(l-e)]

x) (-e )(c-f )-(b-ef)
The tabulated integrals Dw 160.01, 160.11, and 160.21 aid in

the evaluation of II 12 may be evaluated using Dw. 380.001

as rn+

I2 = D(1+JkRn) f dr'

r r

tThe abbreviations 'w and GR refer to Tabies of Integrals and
other Mathematical Data, Fourth Ed., H.B. Dwight, Macmillan,
N.Y., 1961; and Tables of Integrals, Series and ProductsI.S.
Gradahteyn and I.W. Ryshik, Academic Press, N.Y., 1965, res-
pectively.
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" D(l+JkRn )tn R +r +b (B-18)

n- n-

The subscripts n, n+, and n- denote quantities which are

evaluated at r'=rn, rn+' and rn-, respectively.

The evaluation of 13 is facilitated by expanding it

in partial fractions and using the substitution

sinh 6 = (r'+b)/ c-b to obtain

3. n + 213 - ljkRo~ )C *_(Ar'+±B)R drt

YK

(l~jR C

rn-

- 2 f R-CL..j..+C .B~R e

r
rn-

(1.+JkR

"2 - f-(AVIc-b2 sinh 0 + B-Ab)

f
n-

/ ii2 O~V'bsih -2

c-/-b2 cosh 0- e c-b ainh 9 -f+be

c-b cosh 0+ e c-b sinh 0 + f-be

Using GR 2.451.2 and GR 2.451.4, one finds the latter integral

to be
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I II RZ R n++rn ++b

3 n 2 R +r +b1-e( Rn- n-

L 2

+F cb (R -C )(bfR +C -A

+ A ,n Fn+- n+ +) 2n-
2(1-e) (R n-.- Cn_1 (R n++C n+)I

c-b 2(R2 )- (be-f) Rn++b 2-c+ F 4 tanI (R (r +b

F5(rn++b)
5 n-

2a 2

-taJ 1  c-b (Rn++Cn+) +(be-f)R n++b -c

F (r +b)
5 n-

/2 2

-1 c-b (R +C )+(be-f)R +b -c
-tan- - n- nn- -

F (rr +b) (•-l9)

n- n- n

where ,

,F _(B-Ab)(l-e 2)-Ae(be-f)
F5 (-e 2)

/ 2 2 2F 5 = (c-b (1-e )-(be-f)

Equations (3-17)-(B-19) complete the evaluation of (B-16).

The derLvative terms appeiring in (B-12) require

evaluation of integrals of the form

J K dr' - D + dr'Dr R R2_-C2 R

r r
n- n-

(B-20)
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where the unorimed variable r is r or r , as appropriate.

The two edge terms also have non-integrable singularities

at the edge which cancel between the various terms. To

handle this situation numerically, the singularity must be

explicitly identified and removed for numerical integration.

Thus the same kind of approximate analytical integration of

(B-20) as used to evaluate (B-16) would both eliminate one

integration and explicitl-r identify the singular term. The

derivative can be taken inside the integral if care is taken

to identify the qingular terms. Noting that aC/Dr - 1,

3(R2-C 2)/3r 0 0, and WA/3r - B/r - 0, we have

rn+ rn+•f K dr' f -_kC DC

Rr, 3

r r
n- n-

With the approximation of (B-15), the above may be written

as
n+ -JkR

'K dr' e (4 + 13 + 16 + 17 + 18) (B-21)

r
i1

The various integrals appearing in (B-21) are defined and

evaluated as follows:
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r r

-k2 n+ r. n+ n+ [ (2

rn- n-

-k2 De(Rn+-Rn)-(be-f)tn ( B-22n+n)R+r +b (-2

where Dw 380.001 and Dw 380.011 have been used.

r n+

15 kRf 2(De-A)r'+fD-B dr'
r' 2 +2br'+c

r
n-

k Rkn (De-A)ln I__-

+ fD-B-b(De-A)[tan-1 rn++b tan- r- +b

c-b C- /c-b~

(11-23)

where Dw 160.01 and Dw 160.11 have been used. Using

Dw 300.003 and Dw 380.013, one obtains

rn+

16 = (1+ikR)f ~(A-De)r'+(B-Df) dr'
16 a IJRnj3d

r

1+JkR r r
c-b-= - 2 [B-Df-b(A-De) ] R + Rn,

+ [b(B-Df)-c(A-De)J IR + I } R (B-24)
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Again using Dw 160.01 and Dw 160.11, we have

r

I = -jk(l+JkR)f Ar'+B dr'
7 f ~2_ 2 r

r
nl-

rn+

- _jk(l+jkR) Ar'+B dr'

r (1-e 2 )' 2 2(b-ef)r'+c-f 2

n-

- _jk(l+jkRn) nA 2 +C+
2i 1ei R 2_c 2

n- n-

+(l-e2 )-(b-ef)A 1 (l-e2)rn++b-ef}
(1-e 2)F6 F 6

-tan F6
6

(B-25)

where

F 6 -(1-e2 )(c-f2)-(b-ef) 2

The remaining integral is

I. (r'B R2-C2

r

- k2 (Ar ' -dr'8 kf (R -_c 1
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r n+

2 f C(er'+f)(Ar'+B)
iR(R 2_-C2

r
n-

rr- n'+-k~f C['Ae r'2(Af+Be)r'+Bfd'
M -k (' '2 22

R(R -C2)
r

n-

Dividing R2 -C2 (1-e2)r'+ 2(b-ef)r'+c-f into the

bracketed term in the numerator of the Integrand, we may

write the integral as

r

I C [Ae (Af+Be+W)r '+Bf+U]
R J R 2 C 2

r

where

W -2Ae(b-ef)

2

U Ae(c-f)

l-e

Expanding the second term in brackets in the integrand in

partial fractions, one can write 18 as

18 18,+ 18"

where r2 fn+

I -k 2 Aef er'+f dr'

r
ni-

-kAeL e(Rn-R) + (f-be)£n nR+r +b n'
l-2 n -n- R n- +
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and r

2 f [(Af+Be+W)r'+Bf+U] 1 _ R

18 Ui R-C R+C JR

r
n-

The substitution sinh 0 - (r'+ b)/ c-b 2 enables one to write

I as
8 On+

2
18 2k [((Af+Be+W) c-b 2sinh 0 + Bf-U-b(Af+Be+W)]

e
n'-

Ii
c" cosh 0 - e c-b sinh 0-f+be

S1 )dr'

c-b cosh 0+e c-b ainh 0+ f-be

Using GR 2.451.2 and CR 2.451.4, we obtain finally

(R C- )(R +c
"_k2  Af+Be+W £ n+ n+ n- n-

8 2 (R -C (R++Cn+

+ e(Af+Be+W) InRn+r n+b
4- 2 Ri R+r4-(l-e2) nr n-

- lV'c-b2(R -C )-(be-f~)R +b 2 :

+ F an- 1 (n+-Cn+) n-

7( r n+b) F5n+ 5
t-b (R -C )-(be-f)R _+b

8r2n+b)F5
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2I
1  c--b(Rn++Cn+ + (be-f)R++b -c

(rn+b)F5  -

where

nF 5

7c
F7~~~~~~ ~~ = B+-( g+)•,,2- (be-f )Rf+b+)

Equations (-22) through (B-27) complete the evaluation of(

the integral, (B-21). Recall that the integral (B-21) needs

to be evaluated only for observation points at the bicone

edge (see Eq. (B-12)). For the source current pulse

associated with the bicone edge, there reuults a non-

integrable singularity (with respect to 40 integration)

which comes from the term i/R+ in (B-24). Each of the '

derivative terms in (B-12) contains such a non-integrable

singularity, however, and they are of opposite signs so as

to cancel each other. For numerical integration, of course, •

the canceling singularities must be analytically subtracted. .

The integrals Ii through 18 contain integrable singu-

larities such as the usual one where source and field points

coincide (i.e., R-O). In addition, however, there are also

integrable (2ngularitieu introduced by the transformation

(B-6). These arise from current sources which lie along and

are directed transverse to the line which passes through

the observation point and atich is in the direction of the
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electric field component of interest. For example, in

computing the tangential field component E on the cone,l r
C

singularities arise from currents on the topcap and its

image. While the many singularities complicate the numerical

procedure, they can, in principle, be handled. However,

the unwieldiness of the functions appearing in the integrals

I1 through 18 makes the numerical procedure rather ineffi-

cient and subject to error. For example, the computer code

derived from the formulation presented here seemed to yield

reasonable results for moderate cone angles, but often

yielded erroneous results for the very small cone angles

used to check the program. The complexity of the formulation

became a considerable hinderance in determining the source

of these difficulties. Consequently, the final calculations

were done using the formulation of Section III which was

developed as an extension of methods currently being used

to treat flat plate surfaces.
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